Backend-Development
  • Introduce
  • 操作系统和Linux
    • 操作系统基础
      • 进程
      • 进程间通信
      • 线程 & 协程
      • 调度
      • 互斥 & 同步
      • 死锁 & 饥饿
      • 内存管理
      • 文件系统
      • IO
    • Linux
      • Linux共享内存
      • Linux进程的内存空间布局
      • 僵尸进程和孤儿进程
      • 用户态和内核态
      • Linux进程调度算法
      • 理解inode
      • Linux进程间通信
      • Linux虚拟文件系统
      • CPU亲和性
      • 零拷贝技术
      • Linux IO栈
    • Linux常考命令
      • 管道和重定向
      • 文本处理三剑客
      • 文件和目录管理
      • 进程&内存&CPU管理
      • 用户&组管理
      • 网络管理
    • Linux系统调用
      • 内存
      • 进程
    • Linux系统编程
      • Linux堆内存管理
      • pthread库
    • Shell编程
  • 网络通信与网络编程
    • 计算机网络
      • 应用层其他协议
      • 应用层之DNS协议
      • 应用层之HTTP/3协议
      • 应用层之HTTPS协议
      • 应用层之HTTP协议
      • 传输层之UDP协议
      • 传输层之TCP协议
      • 网络层其他协议
      • 网络层之IP协议
      • 数据链路层
      • 物理层
    • 网络编程
      • cookie、session、token
      • TCP的粘包问题
      • 幂等性
      • 网络IO模型
      • 多路复用IO
      • Socket编程
      • 高并发服务器
    • Linux网络编程之底层
      • 传输控制块TCB
      • TCP数据发送之tcp_sendmsg()
      • TCP选项之MSS
    • 网络安全
    • Nginx
    • Wireshark
    • Libevent
  • 数据库
    • 数据库相关概念
    • 关系数据库设计范式
    • SQL
      • 初级SQL
      • 中级SQL
      • 高级SQL
    • Redis
      • Redis数据结构
      • Redis数据类型
      • 数据持久化
      • 雪崩 & 击穿 & 穿透
      • 主从复制
      • Redis集群
    • MySQL
      • MySQL数据类型
      • 事务
      • 事务隔离
      • 存储引擎
      • MyISAM与InnoDB
      • 锁机制
      • 索引
      • 联合索引
      • 主从复制
      • MySQL集群
      • MySQL使用总结
    • MongoDB
      • 启动与停止
      • 查询
    • Memcached
  • 组成原理和体系结构
    • 定点数 & 浮点数 & 内存
    • 体系结构
  • 编译和调试
    • 编译原理
    • Gdb调试
    • 内存屏障
    • 编译器优化
    • make/Makefile
    • cmake
    • 交叉编译
    • C++单元测试
    • 单元测试之Google Test
  • 设计模式
    • 设计模式
    • “组件协作”模式
  • 其他
    • 正则表达式
      • 基本正则表达式
      • 扩展正则表达式
    • Git版本控制
      • 提交代码
      • 常用命令
    • 编码和字符集
    • Vim用法
    • 一文解“锁”
    • 无锁技术
    • 面试中的“锁”
  • 面试题
    • 计算机网络面试题
    • 操作系统面试题
    • 数据库面试题
    • 其他面试题
    • 场景题总结
    • 智力题
Powered by GitBook
On this page
  • 2、调度
  • 2.1、调度时机
  • 2.2、调度原则
  • 2.3、调度算法

Was this helpful?

  1. 操作系统和Linux
  2. 操作系统基础

调度

Previous线程 & 协程Next互斥 & 同步

Last updated 4 years ago

Was this helpful?

2、调度

当一个计算机是多道程序设计系统时,会频繁的有很多进程或者线程来同时竞争CPU时间片。当两个或两个以上的进程或线程处于就绪状态时,就会发生这种情况。如果只有一个CPU可用,那么必须选择一个进程运行,这一功能是在操作系统中完成的,通常称为调度程序(scheduler)。该程序使用的算法叫做调度算法( scheduling algorithm)。

2.1、调度时机

在进程的生命周期中,当进程从一个运行状态到另外一状态变化的时候,其实会触发一次调度。比如,以下状态的变化都会触发操作系统的调度:

  • 从就绪态 -> 运行态:当进程被创建时,会进入到就绪队列,操作系统会从就绪队列选择一个进程运行;

  • 从运行态 -> 阻塞态:当进程发生 I/O 事件而阻塞时,操作系统必须选择另外一个进程运行;

  • 从运行态 -> 结束态:当进程退出结束后,操作系统得从就绪队列选择另外一个进程运行;

因为,这些状态变化的时候,操作系统需要考虑是否要让新的进程给 CPU 运行,或者是否让当前进程从 CPU 上退出来而换另一个进程运行。另外,如果硬件时钟提供某个频率的周期性中断,那么可以根据如何处理时钟中断,把调度算法分为两类:

  • 非抢占式调度算法挑选一个进程,然后让该进程运行直到被阻塞,或者直到该进程退出,才会调用另外一个进程,也就是说不会理时钟中断这个事情。

  • 抢占式调度算法挑选一个进程,然后让该进程只运行某段时间,如果在该时段结束时,该进程仍然在运行时,则会把它挂起,接着调度程序从就绪队列挑选另外一个进程。这种抢占式调度处理,需要在时间间隔的末端发生时钟中断,以便把 CPU 控制返回给调度程序进行调度,也就是常说的时间片机制。

2.2、调度原则

原则一:如果运行的程序,发生了 I/O 事件的请求,那 CPU 使用率必然会很低,因为此时进程在阻塞等待硬盘的数据返回。这样的过程,势必会造成 CPU 突然的空闲。所以,为了提高 CPU 利用率,在这种发送 I/O 事件致使 CPU 空闲的情况下,调度程序需要从就绪队列中选择一个进程来运行。

原则二:有的程序执行某个任务花费的时间会比较长,如果这个程序一直占用着 CPU,会造成系统吞吐量(CPU 在单位时间内完成的进程数量)的降低。所以,要提高系统的吞吐率,调度程序要权衡长任务和短任务进程的运行完成数量。

原则三:从进程开始到结束的过程中,实际上是包含两个时间,分别是进程运行时间和进程等待时间,这两个时间总和就称为周转时间。进程的周转时间越小越好,如果进程的等待时间很长而运行时间很短,那周转时间就很长,这不是我们所期望的,调度程序应该避免这种情况发生。

原则四:处于就绪队列的进程,也不能等太久,当然希望这个等待的时间越短越好,这样可以使得进程更快的在 CPU 中执行。所以,就绪队列中进程的等待时间也是调度程序所需要考虑的原则。

原则五:对于鼠标、键盘这种交互式比较强的应用,我们当然希望它的响应时间越快越好,否则就会影响用户体验了。所以,对于交互式比较强的应用,响应时间也是调度程序需要考虑的原则。

针对上面的五种调度原则,总结成如下:

  • CPU 利用率:调度程序应确保 CPU 是始终匆忙的状态,这可提高 CPU 的利用率;

  • 系统吞吐量:吞吐量表示的是单位时间内 CPU 完成进程的数量,长作业的进程会占用较长的 CPU 资源,因此会降低吞吐量,相反,短作业的进程会提升系统吞吐量;

  • 周转时间:周转时间是进程运行和阻塞时间总和,一个进程的周转时间越小越好;

  • 等待时间:这个等待时间不是阻塞状态的时间,而是进程处于就绪队列的时间,等待的时间越长,用户越不满意;

  • 响应时间:用户提交请求到系统第一次产生响应所花费的时间,在交互式系统中,响应时间是衡量调度算法好坏的主要标准。

说白了,这么多调度原则,目的就是要使得进程要「快」。

不同的调度算法适用的场景也是不同的。在单核 CPU 系统中常见的调度算法如下。

最简单的一个调度算法,就是非抢占式的先来先服务(First Come First Severd, FCFS)算法了。

顾名思义,先来后到,每次从就绪队列选择最先进入队列的进程,然后一直运行,直到进程退出或被阻塞,才会继续从队列中选择第一个进程接着运行。

这似乎很公平,但是当一个长作业先运行了,那么后面的短作业等待的时间就会很长,不利于短作业。FCFS 对长作业有利,适用于 CPU 繁忙型作业的系统,而不适用于 I/O 繁忙型作业的系统。

2.3、调度算法

2.3.1、先来先服务调度算法

✏️
🖋️
🖋️
🖋️
💎