Algorithm-Pattern
  • Introduction
  • C & C++
    • C语言
      • C/C++编译器
      • 宏的使用
      • 编译过程
      • 指针 & 数组
      • 柔性数组
      • 函数指针 & 回调函数
      • C标准库之stdio
      • C标准库之string
      • C标准库之errno
      • C标准库之stdarg
      • C标准库之regex
    • C++基础语法
      • 自增(++) & 自减(--)
      • c语言到c++
      • 可变模板参数
      • 强制类型转换
      • C/C++类型转换的本质
      • 指针 & 引用
      • const的用法
      • static的用法
      • 重要的关键字(一)
      • 重要的关键字(二)
      • 内存申请和释放
      • 内联函数
      • 函数 & 运算符重载
      • 面向对象之封装
      • 构造函数 & 析构函数
      • 面向对象之继承
      • 面向对象之多态
      • 泛型编程
      • 异常
      • 再谈函数指针
    • C++并发编程
      • C++的锁
      • 并发与多线程
    • C++高级特性
      • 函数对象
      • 移动语义 & 完美转发
      • lambda表达式
      • RTTI技术
      • RAII技术
      • 智能指针
      • 模板的特化
      • C++静态库和动态库
      • 内存溢出和内存泄漏
    • STL基础
      • String
      • array/vector/list
      • deque/priority_queue
      • set/map
      • unordered_set/unordered_map
      • algorithm_1
      • functional
      • allocator
    • C++标准库
      • IO
      • Tuple
      • regex
      • bitset
      • numeric
    • STL深入源码
      • vector内部实现
      • deque内部实现
      • sort函数实现
    • 第三方库
      • JsonCpp
      • ProtoBuf
  • 数据结构
    • 线性表
    • 字符串
    • 栈和队列
    • 二叉树
    • 平衡二叉树
    • 平衡多路搜索树
    • 树结构的延申
    • 图
    • 二进制
    • 散列表
  • 算法基础
    • 排序算法
    • 查找算法
    • 数学问题
    • 并查集
    • 递归算法
    • 附加——主定理
    • Catalan数
  • 算法设计思想
    • 滑动窗口思想
    • BFS/DFS
    • 二分法
    • 回溯法
    • 贪心算法
    • 分治法
    • 动态规划
    • 分支限界算法
    • 有限状态机(FSM)
  • LeetCode系列
    • 死磕二叉树
    • 股票买卖问题
    • 打家劫舍问题
    • 跳跃游戏问题
    • 括号匹配问题
    • 石子游戏问题
    • 子序列问题
    • 数组 & 矩阵
    • 排列 & 组合
  • 经典算法问题
    • 几何问题
    • 区间问题
    • 背包问题
    • 石子堆问题
    • 表达式求值
  • 面试题
    • 数据结构和算法基础
    • 程序设计题
      • 实现双线程交替打印
      • C++实现读写锁
      • 实现阻塞队列
      • 实现环形队列
      • 实现线程池
      • 实现智能指针
      • 实现string类
      • 实现高性能local cache
      • 实现内存池
      • 生产者-消费者模型
      • 设计定时器
    • 经典的算法题
    • C++面试题总结
    • 面试算法题总结
由 GitBook 提供支持
在本页
  • 1、资源管理
  • 2、状态管理

这有帮助吗?

  1. C & C++
  2. C++高级特性

RAII技术

上一页RTTI技术下一页智能指针

最后更新于4年前

这有帮助吗?

RAII是C++的发明者Bjarne Stroustrup提出的概念,RAII全称是“Resource Acquisition is Initialization”,直译过来是“资源获取即初始化”,也就是说在构造函数中申请分配资源,在析构函数中释放资源。因为C++的语言机制保证了,当一个对象创建的时候,自动调用构造函数,当对象超出作用域的时候会自动调用析构函数。所以,在RAII的指导下,我们应该使用类来管理资源,将资源和对象的生命周期绑定。

1、资源管理

RAII是用来管理资源、避免资源泄漏的方法。在计算机系统中,资源是数量有限且对系统正常运行具有一定作用的元素。比如:网络套接字、互斥锁、文件句柄和内存等等,它们属于系统资源。由于系统的资源是有限的,所以,我们在编程使用系统资源时,都必须遵循一个步骤:

  1. 申请资源;

  2. 使用资源;

  3. 释放资源。

第一步和第二步缺一不可,因为资源必须要申请才能使用的,使用完成以后,必须要释放,如果不释放的话,就会造成资源泄漏。

智能指针(std::shared_ptr和std::unique_ptr)即RAII最具代表的实现,使用智能指针,可以实现自动的内存管理,再也不需要担心忘记delete造成的内存泄漏。()

#define SCOPEGUARD_LINENAME_CAT(name, line) name##line
#define SCOPEGUARD_LINENAME(name, line) SCOPEGUARD_LINENAME_CAT(name, line)
#define ON_SCOPE_EXIT(callback) ScopeGuard SCOPEGUARD_LINENAME(EXIT, __LINE__)(callback)

class ScopeGuard
{
public:
    explicit ScopeGuard(std::function<void()> f) : 
        handle_exit_scope_(f){};

    ~ScopeGuard(){ handle_exit_scope_(); }
private:
    std::function<void()> handle_exit_scope_;
};

int main()
{
    {
        A *a = new A();
        ON_SCOPE_EXIT([&] {delete a; });
        ......
    }

    {
        std::ofstream f("test.txt");
        ON_SCOPE_EXIT([&] {f.close(); });
        ......
    }

    system("pause");
    return 0;
}

使用C++11标准中的lambda表达式和std::function相结合的方法,定义了根据行号来对ScopeGuard类型对象命名的宏定义。当ScopeGuard对象超出作用域,ScopeGuard的析构函数中会调用handle_exit_scope函数,也就是lambda表达式中的内容,所以在lambda表达式中填上资源释放的代码即可。既不需要为每种资源管理单独写对应的管理类,也不需要考虑手动释放出现各种异常情况下的处理,同时资源的申请和释放放在一起去写。

RAII另一个引申的应用是可以实现安全的状态管理。一个典型的应用就是在线程同步中,使用std::unique_lock或者std::lock_guard对互斥量std:: mutex进行状态管理。通常我们不会写如下的代码:

std::mutex mutex_;
void function()
{
    mutex_.lock();
    ......
    ......
    mutex_.unlock();
}

因为,在互斥量lock和unlock之间的代码很可能会出现异常,或者有return语句,这样的话,互斥量就不会正确的unlock,会导致线程的死锁。所以正确的方式是使用std::unique_lock或者std::lock_guard对互斥量进行状态管理:

std::mutex mutex_;
void function()
{
    std::lock_guard<std::mutex> lock(mutex_);
    ......
    ......
}

在创建std::lock_guard对象的时候,会对std::mutex对象进行lock,当std::lock_guard对象在超出作用域时,会自动std::mutex对象进行解锁,这样的话,就不用担心代码异常造成的线程死锁。

2、状态管理

✏️
✏️
博客