股票买卖问题
膜拜东哥:https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/tuan-mie-gu-piao-wen-ti
该系列题目是动态规划的热点考题,采用状态机的方式做。这 6 道题目是有共性的,以第 4 道题目为例,因为这道题是一个最泛化的形式,其他的问题都是这个形式的简化,看下题目:
给定一个数组,它的第
i个元素是一支给定的股票在第i天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成k笔交易。注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
第一题是只进行一次交易,相当于 k = 1;第二题是不限交易次数,相当于 k = +infinity(正无穷);第三题是只进行 2 次交易,相当于 k = 2;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种。
一、状态穷举框架
利用「状态」进行穷举。我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态:
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 择优(选择1,选择2...)比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。
这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:
用自然语言描述出每一个状态的含义,比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。
我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。读者可能问为什么不是 dp[n - 1][K][1]?因为 [1] 代表手上还持有股票,[0] 表示手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。
二、状态转移框架
上面完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。只看「持有状态」,可以画个状态转移图。

通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:
如果 buy,就要从利润中减去 prices[i],如果 sell,就要给利润增加 prices[i]。今天的最大利润就是这两种可能选择中较大的那个。而且注意 k 的限制,我们在选择 buy 的时候,把 k 减小了 1,很好理解吧,当然你也可以在 sell 的时候减 1,一样的。
现在,我们已经有了:状态转移方程。还差最后一点点,就是定义 base case,即最简单的情况:
把上面的状态转移方程总结一下:
这个数组索引是 -1 怎么编程表示出来呢,负无穷怎么表示呢?这都是细节问题,有很多方法实现。
三、秒杀题目
第一题,k = 1
直接套状态转移方程:
现在发现k都是1,不会改变,即k对状态转移已经没有影响了。可以进一步化简去掉所有 k:
对 i 的 base case 进行处理。可以直接写出代码:
第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 :
第二题,k = +infinity
如果 k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。可以这样改写框架:
我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了,进一步化简去掉所有 k::
直接翻译成代码:
第三题,k = +infinity with cooldown
k = +infinity with cooldown每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:
翻译成代码:
第四题,k = +infinity with fee
每次交易要支付手续费 fee,只要把手续费从利润中减去即可。改写方程:
直接翻译成代码:
第五题,k = 2
k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大。要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了。这道题由于没有消掉 k 的影响,所以必须要对 k 进行穷举:
这里 k 取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:
有状态转移方程和含义明确的变量名指导,很容易看懂。
第六题,k = any integer
有了上一题 k = 2 的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的 k 值会非常大,dp 数组太大了。现在想想,交易次数 k 最多有多大呢?一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k 应该不超过 n/2,如果超过,就没有约束作用了,相当于 k = +infinity。这种情况是之前解决过的。直接把之前的代码重用:
总结
动态规划关键就在于列举出所有可能的「状态」,然后想想怎么穷举更新这些「状态」。一般用一个多维 dp 数组储存这些状态,从 base case 开始向后推进,推进到最后的状态,就是我们想要的答案。具体到股票买卖问题,我们发现了三个状态,使用了一个三维数组,然后是确定每个状态下的选择,总共有三种选择,所以动态规划无非还是穷举(状态) + (选择)更新。
最后更新于
这有帮助吗?